
Projections of random fractals and measures and
Liouville quantum gravity

Kenneth Falconer

University of St Andrews, Scotland, UK

Joint with Xiong Jin (Manchester)

Kenneth Falconer Projections of random fractals and measures and Liouville quantum gravity



Projections of sets

We will work in R2 throughout this talk.

Let projθ denote orthogonal projection from R2 to the line Lθ, let
dimH be Hausdorff dimension, let L be Lebsegue measure on Lθ.

Theorem (Marstrand 1954) Let E ⊂ R2 be a Borel set with
dimH E > 1. Then for Lebesgue almost all θ ∈ [0, π),

L(projθE ) > 0.
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Projections of measures

Write dimH µ = inf{dimH E : µ(E ) > 0} for the (lower) Hausdorff
dimension of measure µ.
We project measures in the obvious way:

(projθµ)(A) = µ{x : projθ ∈ A} for A ⊂ Lθ.

Theorem (Marstrand/Kaufman) Let µ be a Borel measure on R2.
If dimH µ > 1 then projθµ is absolutely continuous w.r.t Lebesgue
measure for almost all θ, in fact with L2 density, i.e. there is
f ∈ L2 such that projθµ(A) =

∫
A f (x)dx for A ⊂ Lθ.
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Exceptional directions

These theorems tell us nothing about which particular directions
have projections with L(projθE ) = 0 or projθµ not absolutely
continuous.

However, the set of exceptional directions can’t be ‘too big’:

Theorem (F, 1982) If E ⊆ R2 and dimH E > 1,

dimH{θ : L(projθE ) = 0} ≤ 2− dimH E .

General problem: Find classes of sets where all projections have
positive length, and measures where all projections are absolutely
continuous (or better), or at least where there are few exceptional
directions.
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Self-similar sets

Given an iterated function sys-
tem of contracting similarities
f1, . . . , fm : R2 → R2 there ex-
ists a unique non-empty compact
E ⊂ R2 such that

E =
m⋃
i=1

fi (E )

which we call a self-similar set.

The family {f1, . . . , fm} has
dense rotations if the rotational
component of at least one of the
fi is an irrational multiple of π.

A self-similar set with dense
rotations
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Projections of positive length

Theorem (Shmerkin & Solomyak 2014) Let E ⊂ R2 be the
self-similar attractor of an IFS with dense rotations with
dimH E > 1. Then L(projθE ) > 0 for all θ except (perhaps) for a
set of θ of Hausdorff dimension 0.

This is a corollary of an analogous result for the absolute
continuity of projections of self-similar measures.

The proof uses the ‘Erdös-Kahane’ method.
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Mandelbrot percolation on a square

• Squares are repeatedly divided into M ×M subsquares
• Each square is retained independently with probability p (' 0.6).
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Mandelbrot percolation on a square

If p > 1/M2 then Ep 6= ∅ with positive probability, conditional on
which dimH Ep = 2 + log p/ logM almost surely.
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Projections of Mandelbrot percolation

For Mandelbrot percolation assume 2 + log p/ logM > 1. Then
conditional on Ep 6= ∅, almost surely:

• for all θ, projθEp contains an interval, so L(projθEp) > 0 (Rams
& Simon, 2012)

• with µ the natural measure on Ep, for all θ, projθµ is absolutely
continuous, with Hölder continuous density for all except the
principal directions. (Peres & Rams, 2014)

• Mandelbrot percolation is a special case of a spatially
independent martingale – A very general setting that covers
projections of many sets and measures including variants on
percolation, random cut-out sets and other random constructions.
(Shmerkin & Soumala, 2015)
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Percolation on self-similar sets

• We can run percolation on a self-similar set E . Assume that E
has dense rotations.
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Percolation on self-similar sets

If dimH Ep > 1 then, almost surely, L(projθEp) > 0 for all θ except
for a set of θ of Hausdorff dimension 0. (F & Jin 2015)
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Random multiplicative cascades

• Random multiplicative cascades were introduced by Mandelbrot
in 1974 in relation to fluid turbulence and studied by Kahane,
Peyrière and others.

• Let W be a positive random variable with mean 1.

• Construct a sequence of random functions fn on the unit square
by repeatedly subdividing squares and multiplying the function on
each subsquare by an independent realisation of W .
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Multiplicative cascade construction on a square

• Squares are divided into 4 at each stage and the function on
each subsquare multiplied by a independent realisation of W .
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Random multiplicative cascade on a square

• For each subset of the square A, the sequence µn(A) =
∫
A fn is a

martingale, so with probability one, converges to µ(A). Then µ is
a measure called a random multiplicative cascade measure.

Theorem (Shmerkin, Suomala, 2015) Let µ be a random cascade
measure on the unit square. If W ∈ (0,C ] then almost surely
projθµ is absolutely continuous w.r.t Lebesgue measure for all
θ ∈ [0, π).

Moreover, with the exception of the two prinicpal directions, the
Radon-Nikodym derivatives are Hölder continuous.

A special case of spatially independent martingales.
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Random multiplicative cascades

Properties of the random cascade measure µ:

• µ has a highly singular ‘multifractal’ structure.

• For a small region A
µ(A) is (approx) log-normally distributed, E(µ(A)) = area(A).

• For small separated regions A,B correlations are very roughly
corr(logµ(A), logµ(B)) ≈ dist(A,B)−γ .

Drawbacks of µ:

• The construction involves preferred distance scales of 2−k .

• Lack of spatial homogeneity - ‘fault lines’ between binary
squares.

• Lack of isotropy - axis directions are special.

Is there a random mass distribution on a domain D with similar
statistical characteristics but without these disadvantages, i.e. a
construction that is ‘continuous’ rather than ‘discrete’?
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Overcoming the drawbacks

Around 1986 Kahane constructed such a process called Gaussian
Multiplicative Chaos. His construction depended on divergent
sums.

The construction was almost forgotten until around 2008 when
Duplantier & Sheffield noticed it and termed the plane case
Liouville quantum gravity measure on the domain D.

They also proposed an alternative construction of the same process
using circle avarages of the Gaussian free field.

Kenneth Falconer Projections of random fractals and measures and Liouville quantum gravity



Gaussian Free Field

Let D ⊂ R2 be a ‘nice’ bounded domain. The Green function GD

on D × D is given by

GD(x , y) = log
1

|x − y |
− E

(
log

1

|ED(x)− y |

)
,

The Green function is conformally invariant in the sense that if f is
a conformal mapping, then

GD(x , y) = Gf (D)(f (x), f (y)).

Let M be the vector space of signed measures on D such that∫
GD(x , y)d |µ|(x)d |ν|(y) <∞. Then there exists mean zero

real-valued Gaussian process (Γ(µ), µ ∈M) on M with covariance
function

E(Γ(µ)Γ(ν)) =

∫
D×D

GD(x , y)dµ(x)dν(y).

Then Γ is the Gaussian Free Field on D.
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Liouville quantum gravity

We would like to define a random measure dµ = eγΓ(δx )dx which
would have correlations ‘like’ the random cascade process.
However, Γ is not a function but a distribution.

So we define a measure by approximation and taking a limit.
For x ∈ D and ε > 0 let ρx ,ε be normalized Lebesgue measure on
{y ∈ D : |x − y | = ε}, i.e., the circle centered at x with radius ε in
D. Fix γ ∈ [0, 2). For ε > 0 define µε by

µε(A) = εγ
2/2

∫
A
eγΓ(ρx,ε) dx . (1)

Let µ = weak-limε→0 µε.
Then µ exists and is non-degenerate almost surely and is called the
γ-Liouville quantum gravity measure or γ-LQG measure on D.
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Liouville quantum gravity - properties

For ε > 0, eγΓ(ρx,ε) has a lognormal distribution with

E
(
eγΓ(ρx,ε)

)
= e

γ2

2
Var(Γ(ρx,ε)) = ε−γ

2/2R(x ,D)γ
2/2 where

R(x ,D) ' dist(x , ∂D) is the conformal radius of x in D. It follows
that:

• µ(A) is close to log-normal if A is small with
E(µ(A)) ' dist(A, ∂D) area(A);

• For A,B small and separated,
corr(logµ(A), logµ(B)) ≈ dist(A,B)−γ

2/2.

• dimH µ = 2− γ2

2 .

• the construction of µ has no preferred scales, is (locally) spatially
homogeneous, isotropic.

• the construction is conformally covariant.
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Impressions of Liouville quantum gravity for γ = 0.4, 1.4, 1.8.
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Why Liouville quantum gravity?

Mathematically:

• it leads to a very elegant theory - see N. Berestycki’s notes.

• the conformal basis gives many nice properties with techniques
from complex analysis available

• it is related to other random structures, such as limits of random
graphs, circle packings, ‘mating of Brownian trees’, and SLE.

Physically:

• Quantum gravity models aim to give a space-time gravitational
field valid at quantum scales when the field becomes highly
distorted and distance only has meaning as a probability
distribution.

• LQG defines a volume (area) measure in a 2-D model that has
features that reflect what might be hoped for in a 4-D space-time
model. The LQG measure may be regarded as representing the
distortion of a smooth surface resulting from quantum effects.
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Projections of Liouville quantum gravity

Theorem (F, Jin 2016) Let 0 < γ <
√

2 and let µ be the LQG
measure on a smooth domain D, so dimH µ = 2− γ2/2 > 1.
Then, almost surely, projθµ is simultaneously absolutely continuous
for all θ, with Radon-Nikodym derivative fθ(x) satisfying a Hölder
condition |fθ(x)− fθ(y)| ≤ |x − y |β where

β =

 1

2
√

2 +

√
6 + 2

(√
2
γ2 − 1

)2


2(√

2

γ2
− 1

)2

.

Corollary (Fourier transforms) For D a convex domain, almost
surely, there is a (random) constant C <∞ such that

|µ̂(ξ)| ≤ C |ξ|−β (ξ ∈ R2),

i.e. dimF µ ≥ 2β.
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Projections of Liouville quantum gravity

Idea of proof Let νL be 1-D Lebesgue measure on the line L.
Define random measures on lines using circle averages:

ν̃L,n(dx) = 2−nγ
2/2eγΓ(ρx,2−n ) νL(dx), x ∈ L,

and let
YL,n := ν̃L,n(L)

be the total mass of ν̃L,n. We claim that a.s there is a C with

sup
n≥1
|YL′,n − YL,n| ≤ C dist

(
L′, L

)β
. (∗)

Let ν̃L = weak-limn→∞ ν̃L,n be γ-LQG on νL and let YL = ν̃L(L)
be its total mass.
Then

|YL′ − YL| ≤ C dist
(
L′, L

)β
.

The conclusion follows since YL is the slice integral of µ.
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Projections of Liouville quantum gravity

The argument to obtain

sup
n≥1
|YL′,n − YL,n| ≤ C dist

(
L′, L

)β
(∗)

is reminiscent of that of the Kolmogorov-Chentsov continuity
theorem. It combines two estimates: given p, q > 1.

E
(
|YL,n+1 − YL,n|p

)
≤ C 2−αn

and
E
(

max
1≤k≤n

|YL′,k − YL,k |q
)
≤ C dist

(
L′, L

)λ
2α
′n.

where α, α′, λ > 0 depend on p and q. By choosing suitable values
of the exponents we get (∗).
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Properties of the LQG measure

More generally, if 0 < γ <
√

2 we
may define the (random) quantum
length Lq(C ) of a curve C by let-
ting ν be length measure on C ,
letting
ν̃ε(dl) = εγ

2/2eγΓ(ρx,ε) ν(dl),
ν̃ = weak-limε→0 ν̃ε and
Lq(C ) = ν̃(D).

Theorem (F, Jin, 2016) If 0 <
γ <

√
2, then given any (rea-

sonable) parameterised family of
curves Ct , with probability 1 the
quantum length Lq(Ct) is defined
for all t and varies (Hölder) con-
tinuously with t.
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Liouville quantum gravity is currently of great interest, not least
because of its many relationships to other areas of maths and
probability.

Thank you!
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THANK YOU to the Organisers!
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